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Federated Learning: Applications



FL Model
 𝑁: set of 𝑛 clients

 𝑃: set of models/classifiers

 Each agent 𝑖 ∈ 𝐴 has 
 Dataset: 𝐷௜
 Loss/error function: 𝑙𝑜𝑠𝑠௜:𝑃 → 𝑅ା

(On training data)
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Goal: Learn 𝜃 ∈ 𝑃 using the data from 𝐷௜s (indirectly)



Introduced by Google Deep Mind in 2016

 FedSGD: 

𝜃ᇱ ൌ 𝜃 െ 𝜂෍𝑤௜ ⋅ 𝝏𝜽𝒍𝒐𝒔𝒔𝒊ሺ. ሻ
௜

 FedAvg: Client updates the model and sends.

 Extensive work: Distributed, Privacy issues, Welfare, …

FL History

Need not be fair/private/strategy-proof



Fair FL 
[Donahue-Kleinberg’21]

What if ∃ noisy/adversarial agent with a lot of bad data?

Egalitarian Fairness:
min
ఏ

max
௜

 𝑙𝑜𝑠𝑠௜ሺ𝜃ሻ

Proportional/Equity-based Fairness: 
𝑛௜  𝑙𝑜𝑠𝑠௜  ൎ 𝑛௝  𝑙𝑜𝑠𝑠௝

(OR Equalize TPR/loss/…)

[Du-Xu-Wu-Tong’21, Mohri-Sivesh-Suresh’19, Papadaki-Martine-Bertran-Shapiro’21, 
Xu-Lyu’20, Zafar-Valera-Gomez-Rodriguez-Gummadi’17, Zeng-Cheng-Lee’21, …]



Fair FL

What if ∃ noisy/adversarial agent with a lot of bad data?

Egalitarian Fairness:
min
ఏ

max
௜

 𝑙𝑜𝑠𝑠௜ሺ𝜃ሻ

Proportional/Equity-based Fairness: 
𝑛௜  𝑙𝑜𝑠𝑠௜  ൎ 𝑛௝  𝑙𝑜𝑠𝑠௝

(OR Equalize TPR/loss/…)

Forced to 
optimize for 
the “bad” 

agent!

May end up 
harming 
others.



Fair FL → Public Decision Making 

 𝑁: set of 𝑛 clients ≡ agents

 𝑃: set of models/classifiers ≡ outcomes

 Each agent 𝑖 ∈ 𝐴 has 
 Dataset: 𝐷௜
 Loss/error function 𝒍𝒐𝒔𝒔𝒊 ≡ Utility function 𝑼𝒊 ൌ 𝑯 െ 𝒍𝒐𝒔𝒔𝒊

𝑼𝒊:𝑷 → 𝑹ା

Goal: Find 𝜃 ∈ 𝑃 that is “liked” by all



CORE in Public Decisions
[Fain-Goel-Munagala’16, Fain-Munagala-Shah’18]

𝜃∗ ∈ 𝑃

 𝑆 ⊆ 𝑁 is a Blocking Coalition if ∃𝜃 ∈ 𝑃 s.t.
∀𝑖 ∈ 𝑆,𝑈௜ 𝜃 ൒ 𝑈௜ሺ𝜃∗ሻ

(with at least one strict inequality)

Distributed 
Data

Data of agents in 𝑆 is ௌ
ே

-representative 
of the test data, and hence can only 
ensure ௌ

ே
fraction of utility 

⇒



CORE in Public Decisions
[Fain-Goel-Munagala’16, Fain-Munagala-Shah’18]

𝜃∗ ∈ 𝑃

 𝑆 ⊆ 𝑁 is a Blocking Coalition if ∃𝜃 ∈ 𝑃 s.t.

∀𝑖 ∈ 𝑆, 𝑺
𝑵
𝑈௜ 𝜃 ൒ 𝑈௜ሺ𝜃∗ሻ

(with atleast one strict inequality)

 Outcome 𝜽∗ is in CORE if there is no blocking coalition. 



CORE in FL: Fair, Efficient, Robust
 𝑆 ⊆ 𝑁 is a Blocking Coalition if ∃𝜃 ∈ 𝑃 s.t.

∀𝑖 ∈ 𝑆, ௌ
ே
𝑈௜ 𝜃 ൒ 𝑈௜ሺ𝜃∗ሻ with atleast one strict inequality

 𝜽∗ is in CORE if there is no blocking coalition. 

 Pareto-Optimal (PO): ሺ𝑆 ൌ 𝑁ሻ
∄𝜃 ∈ 𝑃:  ∀𝑖 ∈ 𝑁,𝑈௜ 𝜃 ൒ 𝑈௜ሺ𝜃∗ሻ with atleast one inequality.

 Pareto-Optimal (PO): ሺ|𝑆| ൌ 1ሻ
∀𝑖 ∈ 𝑁, 𝑈௜ 𝜃∗ ൒

1
𝑛max

ఏ
𝑈_𝑖 𝜃

 Robust (to a few noisy/adversarial agents): 
𝑆 ൌ remaining good agents. 𝑆 is non-blocking (happy)!



CORE in FL: Existence 
[Chaudhury, Li, Kang, Li, M (NeurIPS’22)]

𝜙 𝜃 ൌ argmax௖∈௉෍
𝑈௜ 𝑐
𝑈௜ 𝜃௜

Theorem 1. CORE exists if set 𝜙 𝜃 is a convex set ∀𝜃.
Proof sketch. 
1. Fixed points of 𝜙 are in CORE.
2. Apply Kakutani’s fixed point to 𝜙.

Covers: Concave 𝑈௜’s ≡ Convex 𝑙𝑜𝑠𝑠௜’s 
(Linear reg., Logistic reg., …)  



CORE in FL: Existence 
[Chaudhury, Li, Kang, Li, M (NeurIPS’22)]

𝜙 𝜃 ൌ argmax௖෍𝑈௜ሺ𝑐ሻ/𝑈௜ሺ𝜃ሻ
௜

Claim. Fixed points of 𝜙 are in CORE. 

Proof sketch. 𝜃∗ is FP ⇒ ∑ ௎೔ ఏ
௎೔ ఏ∗௜ ൑ ∑ ௎೔ ఏ∗

௎೔ ఏ∗௜ ൌ 𝑛,∀𝜃.

If 𝑆 ⊆ 𝑁 blocks 𝜃∗, then ∃𝜃 ∈ 𝑃 s.t.

∀𝑖 ∈ 𝑆,
𝑆
𝑛 𝑈௜ 𝜃 ൒ 𝑈௜ 𝜃∗

(at least one strict)

⇒
𝑈௜ 𝜃
𝑈௜ 𝜃∗

൒
𝑛
𝑆

⇒ ∑ ௎೔ ఏ
௎೔ ఏ∗௜∈ୗ ൐ 𝑛 !



CORE in FL: Computation 
[Chaudhury, Li, Kang, Li, M (NeurIPS’22)]

𝜃∗ ൌ argmax
ఏ∈௉

ℒ 𝜃 ൌ෍ log𝑈௜ 𝜃
௜

Theorem 2. If 𝑈௜’s are concave, then 𝜃∗ is in the CORE. And 
can be computed in poly-time.  

Proof sketch. (1) ∀𝜃 ∈ 𝑃, ∑ ௎೔ ఏ
௎೔ሺఏ∗ሻ௜ ൑ 𝑛

(2) Then the claim implies 𝜃∗ in CORE.

Other settings (participatory budgeting, discrete, …) [Fain-Goel-Munagala’16, 
Fain-Munagala-Shah’18] 



CORE in FL: Distributed Protocol 
[Chaudhury, Li, Kang, Li, M (NeurIPS’22)]

𝜃∗ ൌ argmax
ఏ∈௉

ℒ 𝜃 ൌ෍ log𝑈௜ 𝜃
௜

Theorem 3. CoreFed: Distributed federated learning protocol to 
find CORE when 𝑈௜’s are concave.   

Proof sketch. 
Solicit from agent i: 𝜕ఏ𝑙𝑜𝑠𝑠௜ . , 𝑙𝑜𝑠𝑠௜ 𝜃 . 

Move in the direction of 

𝜕ℒ 𝜃 ൌ ∑ డഇ௎೔ .
௎೔ ఏ௜ ൌ ∑ ିడഇ௟௢௦௦೔೔ .

ுି௟௢௦௦೔ሺఏሻ



CORE in FL: Non-convex (DNNs)
[Chaudhury, Li, Kang, Li, M (NeurIPS’22)]

𝐋𝐨𝐜𝐚𝐥 𝐆𝐮𝐚𝐫𝐚𝐧𝐭𝐞𝐞: Local-approx. optima of ℒሺ. ሻ is in 
local-approx. pseudo CORE.

Anything Better?

𝜃

𝑈ଵ 𝑈ଶ

NO!



DNNs: Experiments
[Chaudhury, Li, Kang, Li, M (NeurIPS’22)]

Setup: Two 5x5 convolution layers, 2x2max pooling, and two 
fully connected layer with ReLU activation.
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CORE-style solution concept for DNNs?

Proportional Veto-CORE
[Chaudhury, Murhekar, Yuan, Li, M, Procaccia (ICML’24)]

(Ask me offline )



Prop. Veto-CORE (Ordinal setting) [Moulin’81]

𝑃 ൌ ሼ𝜃ଵ, … ,𝜃௠ሽ

Agent 𝑖’s pref: 𝜽𝟏𝒊 ≻𝒊 𝜽𝟐𝒊 ≻𝒊 … ≻𝒊 𝜽𝒎𝒊
(≡ 𝑈௜:  𝑚    𝑚 െ 1 …        1 )

𝜃∗ Proportional: 𝑈௜ 𝜃∗ ൒
୫ୟ୶
ഇ

௎೔ ఏ

௡
ൌ ௠

௡
.

Agent 𝑖 blocks 𝜃∗ if 𝑈௜ 𝜃∗ ൏ ௠
௡ ሺ𝐵 ൌ ሼ𝜃|𝜃 ≻𝒊 𝜃∗ሽሻ



Prop. Veto-CORE (Ordinal setting) [Moulin’81]

Agent 𝑖’s pref: 𝜽𝟏𝒊 ≻𝒊 𝜽𝟐𝒊 ≻𝒊 … ≻𝒊 𝜽∗ ≻𝒊 … ≻𝒊 𝜽𝒎𝒊
(≡ 𝑈௜:  𝑚    𝑚 െ 1 …                           1 )

𝜃∗ Proportional: 𝑈௜ 𝜃∗ ൒
୫ୟ୶
ഇ

௎೔ ఏ

௡
ൌ ௠

௡
.

Agent 𝑖 blocks 𝜃∗ if 𝑈௜ 𝜃∗ ൏ ௠
௡

≡ m െ 𝐵 ൏ ୫
୬
≡ 𝑚 1 െ ஻

௉
൏ ௠

௡
≡ 1 െ ஻

௉
൏ ଵ

௡

𝑩

ሺ𝐵 ൌ ሼ𝜃|𝜃 ≻𝒊 𝜃∗ሽሻ



Prop. Veto-CORE (Ordinal setting) [Moulin’81]

𝑃 ൌ ሼ𝜃ଵ, … ,𝜃௠ሽ

Agent 𝑖’s pref: 𝜽𝟏𝒊 ≻𝒊 𝜽𝟐𝒊 ≻𝒊 … ≻𝒊 𝜽∗ ≻𝒊 … ≻𝒊 𝜽𝒎𝒊

Agent 𝑖 blocks 𝜃∗ if 1 െ ஻
௉

൏ ଵ
௡

Set 𝑆 ⊆ 𝑁 blocks 𝜃∗ if 1 െ ஻
௉

൏ |𝑺|
௡

ሺ𝑩 ൌ∩𝒊∈𝑺  ሼ𝜽|𝜽 ≻𝒊 𝜽∗ሽሻ

Veto-CORE: If no blocking coalition. 

ሺ𝐵 ൌ ሼ𝜃|𝜃 ≻𝒊 𝜃∗ሽሻ



Prop Veto-CORE (Continuous setting)
[Chaudhury, Murhekar, Yuan, Li, M, Procaccia (ICML’24)]

𝑃: Measurable set. 𝜆: Measure function.
Agent 𝑖’s pref: 𝑈௜:𝑃 → 𝑅ା measurable (allows DNNs)

𝜃∗ ∈ 𝑃. Set 𝑆 ⊆ 𝑁 blocks 𝜃∗ if 

1 െ
𝜆ሺ𝐵ሻ
𝜆ሺ𝑃ሻ ൑

|𝑆|
𝑛 േ 𝜖

∃𝐵 ⊆ 𝑃:  ∀𝜃 ∈ 𝐵,∀𝑖 ∈ 𝑆,𝑈௜ 𝜃 ൒ 𝑈௜ 𝜃∗  
atleast one strict

𝝐-Prop Veto-CORE: If no blocking coalition. 

(Fair ML informs SCT!)



Prop Veto-CORE (PVC): Results
(Continuous) [Chaudhury, Murhekar, Yuan, Li, M, Procaccia (ICML’24)]

Theorem. If 𝑈௜’s are Lebesgue-measurable, then 𝜖-Prop 
Veto-CORE exists for any 𝜖 ∈ 0, ଵ

௡
.

Proposition. If 𝜃∗ is in 𝜖-PVC, then 𝜃∗ is
1. (approx.) Pareto-optimal
2. (approx.) (rankwise) Proportional

Proposition. Better guarantees for aligned preferences.



(Veto-)CORE: Questions

 Limited Heterogeneity: Better guarantees?
 How to formalize heterogeneity parameter?
What guarantees are possible with respect to it?

 Strategic Analysis
 Nash equilibrium, Truthful Mechanisms, …



Data Sharing in FL: Incentives



Data sharing costs: computation/privacy/storage

R. Mehta 30

FL: Incentive Issues Data sharing is expensive!
Why not free-ride?



FL: Data Sharing Game
 𝐴: set of 𝑛 players/agents/clients

 Each agent 𝑖 ∈ 𝐴 has 
 Has dataset 𝐷௜
 Strategy: 𝑑௜ ∈ 0, 1 fraction of data shared
 Accuracy function 𝑎௜: 0, 1 ௡ → 𝑅ା
 Cost function 𝑐௜: 0, 1 → 𝑅ା (cost of sharing data)
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FL: Data Sharing Game
 𝑁: set of 𝑛 players/agents/clients

 Each agent 𝑖 ∈ 𝐴 has 
 Has dataset 𝐷௜
 Strategy: 𝑑௜ ∈ 0, 1 fraction of data shared
 Accuracy function 𝑎௜: 0, 1 ௡ → 𝑅ା
 Cost function 𝑐௜: 0, 1 → 𝑅ା (cost of sharing data)

 Nash Equilibrium (NE): No unilateral deviation
For each agent i, 𝑢௜ 𝑑௜ ,𝑑ି௜ ൒ 𝑢௜ 𝑑௜ᇱ,𝑑ି௜ , ∀𝑑௜ᇱ ∈ ሾ0,1ሿ
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 [Blum, Haghtalab, Philips, Shao (ICML’21)] 
Nash Eq. (NE) Analysis
 Agent’s goal: Minimize data shared subject to 𝑎௜ . ൒ 𝜏௜
 NE may not always exist. Sufficiency conditions, structural results.

 [Karimireddy, Guo, Jordan (Workshop@NeurIPS’22)]
Truthful mechanism to maximize data-sharing
 Agent’s goal: Maximize net payoff u୧ ൌ 𝑎௜ 𝑑ଵ, … ,𝑑௡ െ 𝑐௜ 𝑑௜
 𝑐௜ 𝑑௜ ൌ 𝐶௜ ∗ 𝑑௜, and 𝑎௜’s are identical and concave
 Grim-trigger style strategy

Welfare-maximizing? Fair? Budget-balanced? 
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Incentives: Prior Work



Agent’s goal: Maximize net payoff 𝑢௜ ൌ (Accuracy – Cost)
𝑎௜’s concave, 𝑐௜’s convex

 [Murhekar, Yuan, Chaudhury, Li, M (NeurIPS’23)] 
 NE exists and can be reached via Best-Response-Dynamics.
 NE may have bad welfare (due to free-riding)
 Budget-balanced mechanism to maximize any 𝑝-mean welfare.

 [Murhekar, Song, Shahkar, Chaudhury, M (ICML’25)]
 Reciprocally fair mechanism, with payments 𝒑𝒊 to agent 𝒊.
 Budget-balanced
 Data + Accuracy gain
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Incentives in FL: Results



Reciprocal Fairness:
(Karma!) You get what you give



Agent’s goal: 𝑢௜ 𝒅 ൌ 𝑎௜ 𝒅 െ 𝑐௜ሺ𝑑௜ሻ ൅ 𝑝௜, where 𝒅 ൌ 𝑑ଵ, … ,𝑑௡ , 𝑝௜ is payment.

𝜙௜஺ 𝒅 ൌ Contribution of agent 𝑖 to the welfare of other agents.

 Shapley Value:

𝜙௜஺ 𝒅 ൌ ෍
𝑛
𝑆

ௌ⊂஺

ିଵ

ሺ𝐴ሺ𝒅 𝑆 ∪ ሼ𝑖ሽሿ െ 𝐴ሺ𝒅 𝑆 ሻ

𝒅 𝑆 ൌ ሺ 𝑑௜ ௜∈ௌ, 0, … , 0ሻ and 𝐴 𝒅 ൌ ∑ 𝑎௜ 𝒅௜∈ே
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Reciprocity: You get what you give



Agent’s goal: 𝑢௜ 𝒅 ൌ 𝑎௜ 𝒅 െ 𝑐௜ሺ𝑑௜ሻ ൅ 𝑝௜, where 𝒅 ൌ 𝑑ଵ, … ,𝑑௡ , 𝑝௜ is payment.

𝜙௜஺ 𝒅 ൌ Contribution of agent 𝑖 to the welfare of other agents.

𝑀: Payment Mechanism, 𝑁𝐸ሺ𝑀ሻ: NE set of 𝑀

Reciprocity(𝑀) = min
𝒅∈ோሺெሻ

min
௜∈஺

௔೔ 𝒅 ା௣೔
థ೔
ಲሺ𝒅ሻ

Claim. Reciprocity(𝑀) ൑ 1
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Reciprocity of a Mechanism: 
You get what you give



Shapley Value: 𝜙௜஺ 𝒅 ൌ ∑ ௡
ௌௌ⊂஺

ିଵ
ሺ𝐴ሺ𝒅 𝑆 ∪ ሼ𝑖ሽሿ െ 𝐴ሺ𝒅 𝑆 ሻ

 𝑀௦௛௔௣

𝑝௜ 𝒅 ൌ 𝜙௜஺ 𝒅 െ 𝑎௜ሺ𝒅ሻ

Theorem(s). 𝑎௜ concave, 𝑐௜ convex non-decreasing, ∀𝑖
 𝑀௦௛௔௣ admits a NE, and Best Response converges quickly.
 Reciprocity(𝑀௦௛௔௣) = 1
 High Data-gain and Accuracy gain.
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Reciprociprocal Mechanism: 𝑀௦௛௔௣



Agent’s goal: Maximize net payoff (Net utility – Cost)
𝑈௜’s concave, 𝑐௜’s convex

 [Murhekar, Yuan, Chaudhury, Li, M (NeurIPS’23)] 
 NE exists and can be reached via Best-Response-Dynamics.
 NE may have bad welfare (due to free-riding)
 Budget-balanced mechanism to maximize any 𝑝-mean welfare.

 [Murhekar, Chaudhury, M’24]
 Reciprocally fair mechanism, with payments 𝑝௜ to agent 𝑖.
Net utility (𝑎௜ . ൅ 𝑝௜ሻ of an agent is exactly equals her contribution to the 
collaboration aka her Shapley share
 Budget-balanced
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Incentives in FL: Results

Learning models covered: 
Linear/random discovery, 
random coverage, PAC 
learning, cross-entropy loss, 
…
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Open Directions

Incentives in FL: Data Sharing Game
 FL (distributed) protocols
 Non-IID data / Non-monotone accuracy
 Truthful Mechanisms

Without payment: fair / welfare-maximizing
With payments: budget-balanced / fair/ welfare-maximizing

 (Data) Contracts

General Direction: 
Fair/Trustworthy ML via GT+SCT
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